Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.616
Filtrar
1.
Molecules ; 29(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542880

RESUMO

Recombinant human bone morphogenetic protein 2 (rhBMP-2) is an FDA-approved growth factor for bone regeneration and repair in medical practice. The therapeutic effects of rhBMP-2 may be enhanced through specific binding to extracellular matrix (ECM)-like scaffolds. Here, we report the selection of a novel rhBMP-2-specific DNA aptamer, functionalization of the aptamer in an ECM-like scaffold, and its application in a cellular context. A DNA aptamer BA1 was evolved and shown to have high affinity and specificity to rhBMP-2. A molecular docking model demonstrated that BA1 was probably bound to rhBMP-2 at its heparin-binding domain, as verified with experimental competitive binding assays. The BA1 aptamer was used to functionalize a type I collagen scaffold, and fraction ratios were optimized to mimic the natural ECM. Studies in the myoblast cell model C2C12 showed that the aptamer-enhanced scaffold could specifically augment the osteo-inductive function of rhBMP-2 in vitro. This aptamer-functionalized scaffold may have value in enhancing rhBMP-2-mediated bone regeneration.


Assuntos
Aptâmeros de Nucleotídeos , Proteína Morfogenética Óssea 2 , Humanos , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 2/química , Aptâmeros de Nucleotídeos/farmacologia , Tecidos Suporte/química , Simulação de Acoplamento Molecular , Regeneração Óssea , Fator de Crescimento Transformador beta/farmacologia , Proteínas Recombinantes/química
2.
J Endocrinol ; 261(2)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38492310

RESUMO

Estrogen deficiency is one of the main causes for postmenopausal osteoporosis. Current osteoporotic therapies are of high cost and associated with serious side effects. So there is an urgent need for cost-effective anti-osteoporotic agents. Anti-osteoporotic activity of Litsea glutinosa extract (LGE) is less explored. Moreover, its role in fracture healing and mechanism of action is still unknown. In the present study we explore the osteoprotective potential of LGE in osteoblast cells and fractured and ovariectomized (Ovx) mice models. Alkaline phosphatase (ALP), MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and mineralization assays revealed that LGE treatment increased osteoblast cell differentiation, viability and mineralization. LGE treatment at 0.01 µg increased the expression of BMP2, PSMAD, RUNX2 and type 1 col. LGE also mitigated RANKL-induced osteoclastogenesis. Next, drill hole injury Balb/C mice model was treated with LGE for 12 days. Micro-CT analysis and Calcein labeling at the fracture site showed that LGE (20 mg/kg) enhanced new bone formation and bone regeneration, also increased expression of BMP2/SMAD1 signaling genes at fracture site. Ovx mice were treated with LGE for 1 month. µCT analysis indicated that the treatment of LGE at 20 mg/kg dose prevented the alteration in bone microarchitecture and maintained bone mineral density and bone mineral content. Treatment also increased bone strength and restored the bone turnover markers. Furthermore, in bone samples, LGE increased osteogenesis by enhancing the expression of BMP2/SMAD1 signaling components and decreased osteoclast number and surface. We conclude that LGE promotes osteogenesis via modulating the BMP2/SMAD1 signaling pathway. The study advocates the therapeutic potential of LGE in osteoporosis treatment.


Assuntos
Doenças Ósseas Metabólicas , Litsea , Camundongos , Animais , Feminino , Humanos , Consolidação da Fratura , Osteogênese , Doenças Ósseas Metabólicas/metabolismo , Transdução de Sinais , Osteoblastos/metabolismo , Diferenciação Celular , Ovariectomia , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 2/farmacologia
3.
ACS Biomater Sci Eng ; 10(4): 2414-2425, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38446137

RESUMO

Bone defects are a common and challenging orthopedic problem with poor self-healing ability and long treatment cycles. The difficult-to-heal bone defects cause a significant burden of medical expenses on patients. Currently, biomaterials with mechanical stability, long-lasting action, and osteogenic activity are considered as a suitable way to effectively heal bone defects. Here, an injectable double network (DN) hydrogel prepared using physical and chemical cross-linking methods is designed. The first rigid network is constructed using methylpropenylated hyaluronic acid (HAMA), while the addition of chitosan oligosaccharide (COS) forms a second flexible network by physical cross-linking. The mesoporous silica nanoparticles (MSN) loaded with bone morphogenetic protein-4 (BMP-4) were embedded into DN hydrogel, which not only enhanced the mechanical stability of the hydrogel, but also slowly released BMP-4 to achieve long-term skull repair. The designed composite hydrogel showed an excellent compression property and deformation resistance. In vitro studies confirmed that the HAMA/COS/MSN@BMP-4 hydrogel had good biocompatibility and showed great potential in supporting proliferation and osteogenic differentiation of mouse embryo osteoblast precursor (MC3T3-E1) cells. Furthermore, in vivo studies confirmed that the DN hydrogel successfully filled and closed irregular skull defect wounds, effectively promoted bone regeneration, and significantly promoted bone repair compared with the control group. In addition, HAMA/COS/MSN@BMP-4 hydrogel precursor solution can quickly form hydrogel in situ at the wound by ultraviolet light, which can be applied to the closure and repair of wounds of different shapes, which provides the new way for the treatment of bone defects.


Assuntos
Hidrogéis , Nanopartículas , Camundongos , Animais , Humanos , Hidrogéis/farmacologia , Hidrogéis/química , Osteogênese , Dióxido de Silício/farmacologia , Proteína Morfogenética Óssea 2/química , Proteína Morfogenética Óssea 2/farmacologia , Crânio/cirurgia , Crânio/lesões , Nanopartículas/química
4.
Cell Biochem Funct ; 42(2): e3982, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38488412

RESUMO

Bone Morphogenetic Protein 2 (BMP2), a member of the Transforming Growth Factor-ß (TGF-ß) super family of proteins and is instrumental in the repair of fractures. The synthesis of BMP2 involves extensive post-translational processing and several studies have demonstrated the abysmally low production of rhBMP2 in eukaryotic systems, which may be due to the short half-life of the bioactive protein. Consequently, production costs of rhBMP2 are quite high, limiting its availability to the general populace. Therefore, there is an urgent need to identify better in-vitro systems for large scale production of rhBMP2. In the present study, we have carried out a comparative analysis of rhBMP2 production by the conventionally used Chinese Hamster ovarian cells (CHO) and goat mammary epithelial cells (GMEC), upon transfection with appropriate construct. Udder gland cells are highly secretory, and we reasoned that such cells may serve as a better in-vitro model for large scale production of rhBMP2. Our results indicated that the synthesis and secretion of bioactive rhBMP2 by goat mammary epithelial cells was significantly higher as compared to that by CHO-K1 cells. Our results provide strong evidence that GMECs may serve as a better alternative to other mammalian cells used for therapeutic protein production.


Assuntos
Proteína Morfogenética Óssea 2 , Cabras , Cricetinae , Animais , Humanos , Proteína Morfogenética Óssea 2/farmacologia , Cricetulus , Fator de Crescimento Transformador beta , Proteínas Recombinantes/farmacologia , Células Epiteliais
5.
Am J Sports Med ; 52(3): 779-790, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38357866

RESUMO

BACKGROUND: Bone morphogenetic protein 2 (BMP2) is an appealing osteogenic and chondrogenic growth factor for promoting tendon-bone healing. Recently, it has been reported that soluble vascular endothelial growth factor (VEGF) receptor 1 (sVEGFR1) (a VEGF receptor antagonist) could enhance BMP2-induced bone repair and cartilage regeneration; thus, their combined application may represent a promising treatment to improve tendon-bone healing. Moreover, BMP2 could stimulate skeletal stem cell (SSC) expansion and formation, which is responsible for wounded tendon-bone interface repair. However, whether the codelivery of BMP2 and sVEGFR1 increases tendon enthesis injury-activated SSCs better than does BMP2 alone needs further research. PURPOSE: To study the effect of BMP2 combined with sVEGFR1 on tendon-bone healing and injury-activated SSC lineage. STUDY DESIGN: Controlled laboratory study. METHODS: A total of 128 C57BL/6 mice that underwent unilateral supraspinatus tendon detachment and repair were randomly assigned to 4 groups: (1) untreated control group; (2) hydrogel group, which received a local injection of the blank hydrogel at the injured site; (3) BMP2 group, which received an injection of hydrogel with BMP2; and (4) BMP2 with sVEGFR1 group, which received an injection of hydrogel with BMP2 and sVEGFR1. Histology, micro-computed tomography, and biomechanical tests were conducted to evaluate tendon-bone healing at 4 and 8 weeks after surgery. In addition, flow cytometry was performed to detect the proportion of SSCs and their downstream differentiated subtypes, including bone, cartilage, and stromal progenitors; osteoprogenitors; and pro-chondrogenic progenitors within supraspinatus tendon enthesis at 1 week postoperatively. RESULTS: The repaired interface in BMP2 with sVEGFR1 group showed a significantly improved collagen fiber continuity, increased fibrocartilage, greater newly formed bone, and elevated mechanical properties compared with the other 3 groups. There were more SSCs; bone, cartilage, and stromal progenitors; osteoprogenitors; and pro-chondrogenic progenitors in the BMP2 with sVEGFR1 group than that in the other groups. CONCLUSION: Our study suggests that the combined delivery of BMP2 and sVEGFR1 could promote tendon-bone healing and stimulate the expansion of SSCs and their downstream progeny within the injured tendon-bone interface. CLINICAL RELEVANCE: Combining BMP2 with sVEGFR1 may be a good clinical treatment for wounded tendon enthesis healing.


Assuntos
Proteína Morfogenética Óssea 2 , Traumatismos dos Tendões , Camundongos , Animais , Camundongos Endogâmicos C57BL , Linhagem da Célula , Proteína Morfogenética Óssea 2/farmacologia , Fator A de Crescimento do Endotélio Vascular , Microtomografia por Raio-X , Tendões , Traumatismos dos Tendões/tratamento farmacológico , Hidrogéis
6.
Acta Biomater ; 177: 148-156, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325708

RESUMO

Bone morphogenic protein 2 (BMP2) is known to induce osteogenesis and is applied clinically to enhance spinal fusion despite adverse effects. BMP2 needs to be used in high doses to be effective due to the presence of BMP2 inhibitors. L51P is a BMP2 analogue that acts by inhibition of BMP2 inhibitors. Here, we hypothesized that mixtures of BMP2 and L51P could achieve better spinal fusion outcomes regarding ossification. To test whether mixtures of both cytokines are sufficient to improve ossification, 45 elderly Wistar rats (of which 21 were males) were assigned to seven experimental groups, all which received spinal fusion surgery, including discectomy at the caudal 4-5 level using an external fixator and a porous ß-tricalcium phosphate (ßTCP) carrier. These ßTCP carriers were coated with varying concentrations of BMP2 and L51P. X-rays were taken immediately after surgery and again six and twelve weeks post-operatively. Histological sections and µCT were analyzed after twelve weeks. Spinal fusion was assessed using X-ray, µCT and histology according to the Bridwell scale by voxel-based quantification and a semi-quantitative histological score, respectively. The results were congruent across modalities and revealed high ossification for high-dose BMP2 (10 µg), while PBS induced no ossification. Low-dose BMP2 (1 µg) or 10 µg L51P alone did not induce relevant bone formation. However, all combinations of low-dose BMP2 with L51P (1 µg + 1/5/10 µg) were able to induce similar ossificationas high-dose BMP2. These results are of high clinical relevance, as they indicate L51P is sufficient to increase the efficacy of BMP2 and thus lower the required dose for spinal fusion. STATEMENT OF SIGNIFICANCE: Spinal fusion surgery is frequently applied to treat spinal pathologies. Bone Morphogenic Protein-2 (BMP2) has been approved by the U .S. Food and Drug Administration (FDA-) and by the "Conformité Européenne" (CE)-label. However, its application is expensive and high concentrations cause side-effects. This research targets the improvement of the efficacy of BMP2 in spinal fusion surgery.


Assuntos
Proteína Morfogenética Óssea 2 , Fusão Vertebral , Humanos , Masculino , Ratos , Animais , Idoso , Feminino , Proteína Morfogenética Óssea 2/farmacologia , Ratos Wistar , Fusão Vertebral/métodos , Cauda , Osteogênese , Fator de Crescimento Transformador beta/farmacologia
7.
Sci Rep ; 14(1): 4916, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418564

RESUMO

The clinical standard therapy for large bone defects, typically addressed through autograft or allograft donor tissue, faces significant limitations. Tissue engineering offers a promising alternative strategy for the regeneration of substantial bone lesions. In this study, we harnessed poly(ethylene glycol) (PEG)-based hydrogels, optimizing critical parameters including stiffness, incorporation of arginine-glycine-aspartic acid (RGD) cell adhesion motifs, degradability, and the release of BMP2 to promote bone formation. In vitro we demonstrated that human bone marrow derived stromal cell (hBMSC) proliferation and spreading strongly correlates with hydrogel stiffness and adhesion to RGD peptide motifs. Moreover, the incorporation of the osteogenic growth factor BMP2 into the hydrogels enabled sustained release, effectively inducing bone regeneration in encapsulated progenitor cells. When used in vivo to treat calvarial defects in rats, we showed that hydrogels of low and intermediate stiffness optimally facilitated cell migration, proliferation, and differentiation promoting the efficient repair of bone defects. Our comprehensive in vitro and in vivo findings collectively suggest that the developed hydrogels hold significant promise for clinical translation for bone repair and regeneration by delivering sustained and controlled stimuli from active signaling molecules.


Assuntos
Materiais Biocompatíveis , Regeneração Óssea , Ratos , Humanos , Animais , Materiais Biocompatíveis/química , Osteogênese , Diferenciação Celular , Hidrogéis/química , Polietilenoglicóis/química , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 2/metabolismo
8.
Biomacromolecules ; 25(2): 890-902, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38180887

RESUMO

Both biochemical and mechanical cues could regulate the function of stem cells, but the interaction mechanism of their signaling pathway remains unclear, especially in the three-dimensional (3D) culture mode. Higher matrix stiffness promotes osteogenic differentiation of stem cells, and bone morphogenic protein-2 (BMP-2) has been clinically applied to promote bone regeneration. Here, the crosstalk of extracellular mechanical signals on BMP-2 signaling was investigated in rat bone marrow stromal cells (rMSCs) cultured inside cryogels with interconnective pores. Stiff cryogel independently promoted osteogenic differentiation and enhanced the autocrine secretion of BMP-2, thus stimulating increased phosphorylation levels of the Smad1/5/8 complex. BMP-2 mimetic peptide (BMMP) and high cryogel stiffness jointly guided the osteogenic differentiation of rMSCs. Inhibition of rho-associated kinase (ROCK) by Y-27632 or inhibition of nonmuscle myosin II (NM II) by blebbistatin showed that osteogenesis induction by BMP-2 signaling, as well as autocrine secretion of BMP-2 and phosphorylation of the Smad complex, requires the involvement of cytoskeletal tension and ROCK pathway signaling. An interconnective microporous cryogel scaffold promoted rMSC osteogenic differentiation by combining matrix stiffness and BMMP, and it accelerated critical cranial defect repair in the rat model.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Pargilina/análogos & derivados , Ratos , Animais , Criogéis , Gelatina , Diferenciação Celular , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 2/metabolismo , Células da Medula Óssea/metabolismo , Células Cultivadas
9.
Sci Rep ; 14(1): 2602, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297106

RESUMO

Based on anti-inflammatory and osteogenic properties of hesperidin (HE), we hypothesized its systemic administration could be a cost-effective method of improving BMP-induced bone regeneration. Sprague-Dawley rats were allocated into 4 groups (n = 10/group): a 5-mm critical-sized mandible defect + collagen scaffold or, scaffold + 1 µg of BMP2 with and without dietary HE at 100 mg/kg. HE was administered by oral gavage 4 weeks prior to surgeries until euthanasia at day 7 or 14 post-surgery. The healing tissue within the defect collected at day 7 was subjected to gene expression analysis. Mandibles harvested at day 14 were subjected to microcomputed tomography and histology. HE + BMP2-treated rats had a statistically significant decrease in expression of inflammatory genes compared to BMP2 alone. The high-dose BMP2 alone caused cystic-like regeneration with incomplete defect closure. HE + BMP2 showed virtually complete bone fusion. Collagen fibril birefringence pattern (red color) under polarized light indicated high organization in BMP2-induced newly formed bone (NFB) in HE-supplemented group (p < 0.05). Clear changes in osteocyte lacunae as well as a statistically significant increase in osteoclasts were found around NFB in HE-treated rats. A significant increase in trabecular volume and thickness, and trabecular and cortical density was found in femurs of HE-supplemented rats (p < 0.05). Our findings show, for the first time, that dietary HE has a remarkable modulatory role in the function of locally delivered high-dose BMP2 in bone regeneration possibly via control of inflammation, osteogenesis, changes in osteocyte and osteoclast function and collagen maturation in regenerated and native bone. In conclusion, HE had a significant skeletal bone sparing effect and the ability to provide a more effective BMP-induced craniofacial regeneration.


Assuntos
Hesperidina , Ratos , Animais , Ratos Sprague-Dawley , Hesperidina/farmacologia , Microtomografia por Raio-X , Regeneração Óssea , Osteogênese , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 2/genética , Colágeno/farmacologia , Inflamação
10.
Tissue Eng Part C Methods ; 30(3): 102-112, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38271574

RESUMO

The aim of this study was to assess the bone regeneration potential of a polydioxanone (PDO) scaffold together with recombinant human bone morphogenetic protein-2 (rhBMP-2) for the reconstruction of large bone defect. In total, 24 male rats (6 months old) were subjected to bilateral femoral stabilization using titanium plates to create a 2 mm gap, and reconstruction using rhBMP-2 (Infuse®; 3.25 µg). The bone defects were covered with PDO (PDO group), or with titanium mesh (Ti group). Animals were euthanized on days 14 and 60. Simultaneously, 16 rats received PDO and Ti in their dorsum for the purpose of biocompatibility analysis at 3, 5, 7, and 10 days postoperatively. X-ray densitometry showed a higher density in the PDO group on day 14. On day 60, coverage of the bone defect with PDO showed a larger quantity of newly formed bone than that found for the Ti group, a lower inflammatory infiltrate value, and a more significant number of blood vessels on day 14. By immunohistochemical assessment, runt-related transcription factor 2 (RUNX2) and osteocalcin (OCN) showed higher labeling on day 14 in the PDO group. On day 60, bone morphogenetic protein-2 (BMP-2) showed higher labeling in the PDO group, whereas Ti showed higher labeling for osteoprotegerin, nuclear factor kappa B ligand-activating receptor, RUNX2, and OCN. Furthermore, biocompatibility analysis showed a higher inflammatory response in the Ti group. The PDO scaffold enhanced bone regeneration when associated with rhBMP-2 in rat femur reconstruction. Impact statement Regeneration of segmental bone defects is a difficult task, and several techniques and materials have been used. Recent advances in the production of synthetic polymers, such as polydioxanone (PDO), produced by three-dimensional printing, have shown distinct characteristics that could improve tissue regeneration even in an important bone defect. The present preclinical study showed that PDO membranes used as scaffolds to carry recombinant human bone morphogenetic protein-2 (rhBMP-2) improved bone tissue regeneration by more than 8-fold when compared with titanium mesh, suggesting that PDO membranes could be a feasible and useful material for use in guided bone regeneration. (In English, viable is only used for living creatures capable of sustaining life.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Polidioxanona , Masculino , Ratos , Humanos , Animais , Lactente , Polidioxanona/farmacologia , Titânio , Proteína Morfogenética Óssea 2/farmacologia , Fator de Crescimento Transformador beta/farmacologia , Regeneração Óssea , Proteínas Recombinantes/farmacologia , Fêmur/diagnóstico por imagem
11.
Int J Biol Macromol ; 254(Pt 2): 127876, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37926322

RESUMO

The clinical utility of bone morphogenetic protein 2 (BMP2) is limited because of the poor attraction between BMP2 and carriers, resulting in low loading efficiency and initial burst release. Here, the high binding affinity of BMP2 to the biosilica surface was utilized to overcome this limitation. Atomic force microscopy revealed that BMP2 bound nearly 8- and 2-fold more strongly to biosilica-coated hydroxyapatite than to uncoated and plain silica-coated hydroxyapatite, respectively. To achieve controlled release, collagen was introduced between the silica layers on hydroxyapatite, which was optimized by adjusting the collagen concentration and number of layers. The optimal biosilica/collagen formulation induced sustained BMP2 release without compromising loading efficiency. BMP2 combined with the mentioned formulation led to an increase in osteogenesis, as compared to the combination of BMP2 with either biosilica-coated or non-coated hydroxyapatite in vitro. In rat calvarial defect models, the biosilica/collagen-coated hydroxyapatite with 1 µg BMP2 showed 26 % more bone regeneration than the same dose of BMP2-loaded hydroxyapatite and 10.6 % more than hydroxyapatite with 2.5-fold dose of BMP2. Using BMP2 affinity carriers coated with biosilica/collagen allows for more efficacious in situ loading and delivery of BMP2, making them suitable for the clinical application of growth factors through a soaking method.


Assuntos
Proteína Morfogenética Óssea 2 , Osteogênese , Ratos , Animais , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 2/metabolismo , Regeneração Óssea , Durapatita , Colágeno , Dióxido de Silício , Tecidos Suporte
12.
Andrology ; 12(2): 447-458, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37290397

RESUMO

BACKGROUND: The odds of erectile dysfunction are three times more prevalent in diabetes. Severe peripheral vascular and neural damage in diabetic patients responds poorly to phosphodiesterase-5 (PDE5) inhibitors. However, bone morphogenetic protein 2 is known to be involved in angiogenesis. OBJECTIVES: To assess the efficacy of bone morphogenetic protein 2 in stimulating angiogenesis and augmenting nerve regeneration in a mouse model of diabetic-induced erectile dysfunction. MATERIALS AND METHODS: The induction of diabetes mellitus was performed by streptozotocin (50 mg/kg daily) administered intraperitoneally for 5 successive days to male C57BL/6 mice that were 8 weeks old. Eight weeks post-inductions, animals were allocated to one of five groups: a control group, a streptozotocin-induced diabetic mouse group receiving two intracavernous 20 µL phosphate-buffered saline injections, or one of three bone morphogenetic protein 2 groups administered two injections of bone morphogenetic protein 2 protein (1, 5, or 10 µg) diluted in 20 µL of phosphate-buffered saline within a 3-day interval between the first and second injections. The erectile functions were assessed 2 weeks after phosphate-buffered saline or bone morphogenetic protein 2 protein injections by recording the intracavernous pressure through cavernous nerve electrical stimulation. Angiogenic activities and nerve regenerating effects of bone morphogenetic protein 2 were determined in penile tissues, aorta, vena cava, the main pelvic ganglions, the dorsal roots, and from the primary cultured mouse cavernous endothelial cells. Moreover, fibrosis-related factor protein expressions were evaluated by western blotting. RESULTS: Erectile function recovery to 81% of the control value in diabetic mice was found with intracavernous bone morphogenetic protein 2 injection (5 µg/20 µL). Pericytes and endothelial cells were extensively restored. It was confirmed that angiogenesis was promoted in the corpus cavernosum of diabetic mice treated with bone morphogenetic protein 2 through increased ex vivo sprouting of aortic rings, vena cava and penile tissues, and migration and tube formation of mouse cavernous endothelial cells. Bone morphogenetic protein 2 protein enhanced cell proliferation and reduced apoptosis in mouse cavernous endothelial cells and penile tissues, and promoted neurite outgrowth in major pelvic ganglia and dorsal root ganglia under high-glucose conditions. Furthermore, bone morphogenetic protein 2 suppressed fibrosis by reducing mouse cavernous endothelial cell fibronectin, collagen 1, and collagen 4 levels under high-glucose conditions. CONCLUSION: Bone morphogenetic protein 2 modulates neurovascular regeneration and inhibits fibrosis to revive the mouse erection function in diabetic conditions. Our findings propose that the bone morphogenetic protein 2 protein represents a novel and promising approach to treating diabetes-related erectile dysfunction.


Assuntos
Diabetes Mellitus Experimental , Disfunção Erétil , Animais , Humanos , Masculino , Camundongos , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 2/farmacologia , Colágeno/metabolismo , Colágeno/farmacologia , Diabetes Mellitus Experimental/complicações , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Disfunção Erétil/tratamento farmacológico , Disfunção Erétil/etiologia , Disfunção Erétil/metabolismo , Glucose/metabolismo , Camundongos Endogâmicos C57BL , Ereção Peniana , Pênis , Fosfatos/metabolismo , Fosfatos/farmacologia , Estreptozocina
13.
Biomaterials ; 302: 122357, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37879188

RESUMO

Recombinant bone morphogenetic protein-2 (BMP-2) is a potent osteoinductive growth factor that can promote bone regeneration for challenging skeletal repair and even for ectopic bone formation in spinal fusion procedures. However, serious clinical side effects related to supraphysiological dosing highlight the need for advances in novel biomaterials that can significantly reduce the amount of this biologic. Novel biomaterials could not only reduce clinical side effects but also expand the indications for use of BMP-2, while at the same time lowering the cost of such procedures. To achieve this objective, we have developed a slurry containing a known supramolecular polymer that potentiates BMP-2 signaling and porous collagen microparticles. This slurry exhibits a paste-like consistency that stiffens into an elastic gel upon implantation making it ideal for minimally invasive procedures. We carried out in vivo evaluation of the novel biomaterial in the rabbit posterolateral spine fusion model, and discovered efficacy at unprecedented ultra-low BMP-2 doses (5 µg/implant). This dose reduces the growth factor requirement by more than 100-fold relative to current clinical products. This observation is significant given that spinal fusion involves ectopic bone formation and the rabbit model is known to be predictive of human efficacy. We expect the novel biomaterial can expand BMP-2 indications for difficult cases requiring large volumes of bone formation or involving patients with underlying conditions that compromise bone regeneration.


Assuntos
Proteína Morfogenética Óssea 2 , Fusão Vertebral , Animais , Humanos , Coelhos , Proteína Morfogenética Óssea 2/farmacologia , Fator de Crescimento Transformador beta , Regeneração Óssea , Colágeno , Materiais Biocompatíveis , Fusão Vertebral/métodos
14.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894931

RESUMO

Bone morphogenetic proteins (BMPs) have tremendous therapeutic potential regarding the treatment of bone and musculoskeletal disorders due to their osteo-inductive ability. More than twenty BMPs have been identified in the human body with various functions, such as embryonic development, skeleton genesis, hematopoiesis, and neurogenesis. BMPs can induce the differentiation of MSCs into the osteoblast lineage and promote the proliferation of osteoblasts and chondrocytes. BMP signaling is also involved in tissue remodeling and regeneration processes to maintain homeostasis in adults. In particular, growth factors, such as BMP-2 and BMP-7, have already been approved and are being used as treatments, but it is unclear as to whether they are the most potent BMPs that induce bone formation. According to recent studies, BMP-9 is known to be the most potent inducer of the osteogenic differentiation of mesenchymal stem cells, both in vitro and in vivo. However, its exact role in the skeletal system is still unclear. In addition, research results suggest that the molecular mechanism of BMP-9-mediated bone formation is also different from the previously known BMP family, suggesting that research on signaling pathways related to BMP-9-mediated bone formation is actively being conducted. In this study, we performed a phosphorylation array to investigate the signaling mechanism of BMP-9 compared with BMP-2, another influential bone-forming growth factor, and we compared the downstream signaling system. We present a mechanism for the signal transduction of BMP-9, focusing on the previously known pathway and the p53 factor, which is relatively upregulated compared with BMP-2.


Assuntos
Fator 2 de Diferenciação de Crescimento , Osteogênese , Humanos , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 2/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , Fator 2 de Diferenciação de Crescimento/metabolismo , Osteoblastos/metabolismo , Periósteo/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo
15.
Biomaterials ; 302: 122335, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37748419

RESUMO

The bone morphogenetic protein (BMP) signaling pathway plays a crucial role in bone development and regeneration. While BMP-2 is widely used as an alternative to autograft, its clinical application has raised concerns about adverse side effects and deteriorated bone quality. Therefore, there is a need to develop more sophisticated approaches to regulate BMP signaling and promote bone regeneration. Here, we present a novel complementary strategy that targets both BMP antagonist noggin and agonist Trb3 to enhance bone defect repair without the application of exogenous BMP-2. In vitro studies showed that overexpression of Trb3 with simultaneous noggin suppression significantly promotes osteogenic differentiation of mesenchymal stem cells. This was accompanied by increased BMP/Smad signaling. We also developed sterosome nanocarriers, a non-phospholipid liposomal system, to achieve non-viral mediated noggin suppression and Trb3 overexpression. The gene-loaded sterosomes were integrated onto an apatite-coated polymer scaffold for in vivo calvarial defect implantation, resulting in robust bone healing compared to BMP-2 treatments. Our work provides a promising alternative for high-quality bone formation by regulating expression of BMP agonists and antagonists.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Diferenciação Celular , Regeneração Óssea , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 2/metabolismo , Transdução de Sinais
16.
Stomatologiia (Mosk) ; 102(4): 76-80, 2023.
Artigo em Russo | MEDLINE | ID: mdl-37622306

RESUMO

In the review gene constructs and proteins used to impart osteoinductive properties to bone graft materials are compared. On the basis of clinical and experimental data the experience and prospects of their application in maxillofacial surgery and dentistry are described. Information about complications associated with the use of bone morphogenetic protein-2 (BMP-2) and vectors carrying its gene is provided.


Assuntos
Proteína Morfogenética Óssea 2 , Transplante Ósseo , Cirurgia Bucal , Humanos , Proteína Morfogenética Óssea 2/farmacologia
17.
Acta Biomater ; 170: 360-375, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37611691

RESUMO

The clinical application of growth factors such as recombinant human bone morphogenetic protein-2 (rh-BMP-2), for functional bone regeneration remains challenging due to limited in vivo efficacy and adverse effects of previous modalities. To overcome the instability and short half-life of rh-BMP-2 in vivo, we developed a novel osteogenic supplement by fusing a protein transduction domain (PTD) with BMP-2, effectively creating a prodrug of BMP-2. In this study, we first created an improved PTD-BMP-2 formulation using lipid nanoparticle (LNP) micellization, resulting in downsizing from micrometer to nanometer scale and achieving a more even distribution. The micellized PTD-BMP-2 (mPTD-BMP-2) demonstrated improved distribution and aggregation profiles. As a prodrug of BMP-2, mPTD-BMP-2 successfully activated Smad1/5/8 and induced mineralization with osteogenic gene induction in vitro. In vivo pharmacokinetic analysis revealed that mPTD-BMP-2 had a much more stable pharmacokinetic profile than rh-BMP-2, with a 7.5-fold longer half-life. The in vivo BMP-responsive element (BRE) reporter system was also successfully activated by mPTD-BMP-2. In the in vivo rat tibia distraction osteogenesis (DO) model, micro-computed tomography (micro-CT) scan findings indicated that mPTD-BMP-2 significantly increased bone volume, bone surface, axis moment of inertia (MOI), and polar MOI. Furthermore, it increased the expression of osteogenesis-related genes, and induced bone maturation histologically. Based on these findings, mPTD-BMP-2 could be a promising candidate for the next-generation osteogenesis drug to promote new bone formation in DO surgery. STATEMENT OF SIGNIFICANCE: This study introduces micellized bone morphogenetic protein-2 (mPTD-BMP-2), a next-generation osteogenic supplement that combines protein transduction domain (PTD) and nano-sized micelle formulation technique to improve transduction efficiency and stability. The use of PTD represents a novel approach, and our results demonstrate the superiority of mPTD-BMP-2 over rh-BMP-2 in terms of in vivo pharmacokinetic profile and osteogenic potential, particularly in a rat tibial model of distraction osteogenesis. These findings have significant scientific impact and potential clinical applications in the treatment of bone defects that require distraction osteogenesis. By advancing the field of osteogenic supplements, our study has the potential to contribute to the development of more effective treatments for musculoskeletal disorders.


Assuntos
Osteogênese por Distração , Pró-Fármacos , Ratos , Humanos , Animais , Tíbia/metabolismo , Osteogênese por Distração/métodos , Pró-Fármacos/farmacologia , Microtomografia por Raio-X , Proteínas Morfogenéticas Ósseas , Proteína Morfogenética Óssea 2/farmacologia , Osteogênese , Proteína Morfogenética Óssea 7/farmacologia
18.
Clin Spine Surg ; 36(10): E512-E518, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37651560

RESUMO

STUDY DESIGN: A nicotine-impaired spinal fusion rabbit model. OBJECTIVE: To examine whether controlled delivery of morselized absorbable collagen sponge recombinant human bone morphogenetic protein-2 (rhBMP2) in a delayed manner postsurgery would allow for improved bone healing. SUMMARY OF BACKGROUND DATA: The current delivery method of rhBMP-2 during surgery causes a burst of rhBMP-2, which is not sustained. Given that bone morphogenetic protein 2 (BMP-2) expression peaks later in the fusion process, there may be the benefit of delivery of rhBMP-2 later in the healing process. METHODS: Sixteen male 1-year-old rabbits underwent a posterolateral spinal fusion with iliac crest bone graft at L5-L6 while being given nicotine to prevent spinal fusion as previously published. Eight were controls, whereas 8 had morselized rhBMP-2 (4.2 mg) injected at the fusion site at 4 weeks postoperatively. Histologic, radiologic, and palpation examinations were performed at 12 weeks to determine fusion status and the volume of bone formed. Hematoxylin and eosin stains were used for histology. A Student t test was used to compare the computed tomography scan measured volume of bone created between the control cohort (CC) and rhBMP-2 delayed delivery cohort (BMP-DDC). RESULTS: Of the total, 7/8 rabbits in the BMP-DDC and 5/8 rabbits in the CC formed definitive fusion with a positive palpation examination, bridging bone between transverse processes on computed tomography scan, and an x-ray showing fusion. Histologic analysis revealed newly remodeled bone within the BMP-DDC. There was an increased average volume of bone formed within the BMP-DDC versus the CC (22.6 ± 13.1 vs 11.1 ± 3.6 cm 3 , P = 0.04). CONCLUSION: Our study shows that injectable morselized absorbable collagen sponge/rhBMP-2 can create twice as much bone within a nicotine-impaired rabbit spine fusion model when delivered 4 weeks out from the time of surgery.


Assuntos
Proteínas Morfogenéticas Ósseas , Fusão Vertebral , Animais , Coelhos , Humanos , Masculino , Lactente , Nicotina/farmacologia , Projetos Piloto , Proteína Morfogenética Óssea 2/farmacologia , Coluna Vertebral , Fusão Vertebral/métodos , Colágeno/farmacologia , Transplante Ósseo/métodos , Vértebras Lombares/cirurgia
19.
Acta Biomater ; 170: 53-67, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37634836

RESUMO

While bone morphogenic protein-2 (BMP-2) is one of the most widely studied BMPs in bone tissue engineering, BMP-9 has been purported to be a highly osteogenic BMP. This work investigates the individual osteogenic effects of recombinant human (rh) BMP-2 and rhBMP-9, when tethered into a hydrogel, on encapsulated human mesenchymal stem cells (MSCs). A matrix-metalloproteinase (MMP)-sensitive hydrogel nanocomposite, comprised of poly(ethylene glycol) crosslinked with MMP-sensitive peptides, tethered RGD, and entrapped hydroxyapatite nanoparticles was used. The rhBMPs were functionalized with free thiols and then covalently tethered into the hydrogel by a thiol-norbornene photoclick reaction. rhBMP-2 retained its full bioactivity post-thiolation, while the bioactivity of rhBMP-9 was partially reduced. Nonetheless, both rhBMPs were highly effective at enhancing osteogenesis over 12-weeks in a chemically-defined medium. Expression of ID1 and osterix, early markers of osteogenesis; collagen type I, a main component of the bone extracellular matrix (ECM); and osteopontin, bone sialoprotein II and dentin matrix protein I, mature osteoblast markers, increased with increasing concentrations of tethered rhBMP-2 or rhBMP-9. When comparing the two BMPs, rhBMP-9 led to more rapid collagen deposition and greater mineralization long-term. In summary, rhBMP-2 retained its bioactivity post-thiolation while rhBMP-9 is more susceptible to thiolation. Despite this shortcoming with rhBMP-9, both rhBMPs when tethered into this hydrogel, enhanced osteogenesis of MSCs, leading to a mature osteoblast phenotype surrounded by a mineralized ECM. STATEMENT OF SIGNIFICANCE: Osteoinductive hydrogels are a promising vehicle to deliver mesenchymal stem cells (MSCs) for bone regeneration. This study examines the in vitro osteoinductive capabilities when tethered bone morphogenic proteins (BMPs) are incorporated into a degradable biomimetic hydrogel with cell adhesive ligands, matrix metalloproteinase sensitive crosslinks for cell-mediated degradation, and hydroxyapatite nanoparticles. This study demonstrates that BMP-2 is readily thiolated and tethered without loss of bioactivity while bioactivity of BMP-9 is more susceptible to immobilization. Nonetheless, when either BMP2 or BMP9 are tethered into this hydrogel, osteogenesis of human MSCs is enhanced, bone extracellular matrix is deposited, and a mature osteoblast phenotype is achieved. This bone-biomimetic hydrogel is a promising design for stem cell-mediated bone regeneration.


Assuntos
Fator 2 de Diferenciação de Crescimento , Osteogênese , Humanos , Fator 2 de Diferenciação de Crescimento/farmacologia , Materiais Biocompatíveis/farmacologia , Proteína Morfogenética Óssea 2/farmacologia , Proteínas Morfogenéticas Ósseas , Durapatita/farmacologia , Hidrogéis/farmacologia , Diferenciação Celular
20.
Carcinogenesis ; 44(8-9): 695-707, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-37590989

RESUMO

The acquisition of motility via epithelial-mesenchymal transition (EMT) and osteoclast induction are essential for the invasion and metastasis of oral squamous cell carcinoma (OSCC) to bone. However, the molecule suppressing both EMT and osteoclastogenesis is still unknown. In this study, we found that cellular communication network factor 6 (CCN6) was less produced in a human OSCC cell line, HSC-3 with mesenchymal phenotype, than in HSC-2 cells without it. Notably, CCN6 interacted with bone morphogenetic protein 2 (BMP2) and suppressed the cell migration of HSC-3 cells stimulated by BMP2. Moreover, knockdown of CCN6 in HSC-2 cells led to the promotion of EMT and enhanced the effect of transforming growth factor-ß (TGF-ß) on the promotion of EMT. Furthermore, CCN6 combined with BMP2 suppressed EMT. These results suggest that CCN6 strongly suppresses EMT in cooperation with BMP2 and TGF-ß. Interestingly, CCN6 combined with BMP2 increased the gene expression of receptor activator of nuclear factor-κB ligand (RANKL) in HSC-2 and HSC-3 cells. Additionally, CCN6 interacted with RANKL, and CCN6 combined with RANKL suppressed RANKL-induced osteoclast formation. In metastatic lesions, increasing BMP2 due to the bone destruction led to interference with binding of CCN6 to RANKL, which results in the promotion of bone metastasis of OSCC cells due to continuous osteoclastogenesis. These findings suggest that CCN6 plays dual roles in the suppression of EMT and in the promotion of bone destruction of OSCC in primary and metastatic lesions, respectively, through cooperation with BMP2 and interference with RANKL.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Proteína Morfogenética Óssea 2/farmacologia , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Neoplasias Bucais/patologia , Ligante RANK/genética , Ligante RANK/metabolismo , Ligante RANK/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Fator de Crescimento Transformador beta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...